SYSEN 6880

Global toggle of class tabs

Links for textbooks and Cornell Store open in new tab.

SYSEN 6880

Course information provided by the Courses of Study 2023-2024.

This course covers the basic concepts, models and algorithms of Bayesian learning, classification, regression, dimension reduction, clustering, density estimation, artificial neural networks, deep learning, and reinforcement learning. Application and methodology topics include process monitoring, fault diagnosis, preventive maintenance, root cause analysis, soft sensing, quality control, machine learning for process optimization, data-driven decision making under uncertainty, missing data imputation, data de-noising, and anomaly/outlier detection.

When Offered Spring.

Prerequisites/Corequisites Prerequisite: CEE 3040 or MATH 4710 or ORIE 3500 or equivalent, CHEME 6800/SYSEN 6800 or ORIE 3310 or ORIE 5310 or ORIE 5380.

View Enrollment Information

Syllabi: none
  •   Regular Academic Session.  Choose one lecture and one discussion. Combined with: CHEME 6880SYSEN 6880

  • 4 Credits GradeNoAud

  •  9265 SYSEN 6880   LEC 001

  •  9959 SYSEN 6880   DIS 201

  • 17770 SYSEN 6880   DIS 202

  • Instruction Mode: Distance Learning-Asynchronous

Syllabi: none
  •   Regular Academic Session.  Choose one lecture and one discussion. Combined with: CHEME 6880SYSEN 6880

  • 4 Credits GradeNoAud

  • 17769 SYSEN 6880   LEC 002

  • Instruction Mode: Distance Learning-Asynchronous

  • 19377 SYSEN 6880   DIS 203

  • 19378 SYSEN 6880   DIS 204

  • Instruction Mode: Distance Learning-Asynchronous