CS 6785
Last Updated
- Schedule of Classes - April 4, 2023 12:09PM EDT
- Course Catalog - April 3, 2023 12:59PM EDT
Classes
CS 6785
Course Description
Course information provided by the Courses of Study 2022-2023.
Generative models are a class of machine learning algorithms that define probability distributions over complex, high-dimensional objects such as images, sequences, and graphs. Recent advances in deep neural networks and optimization algorithms have significantly enhanced the capabilities of these models and renewed research interest in them. This course explores the foundational probabilistic principles of deep generative models, their learning algorithms, and popular model families, which include variational autoencoders, generative adversarial networks, autoregressive models, and normalizing flows. The course also covers applications in domains such as computer vision, natural language processing, and biomedicine, and draws connections to the field of reinforcement learning.
When Offered Spring.
Permission Note Enrollment limited to: Cornell Tech students.
Prerequisites/Corequisites Prerequisite: CS 2110, MATH 1920, MATH 2940, MATH 4710, or permission of instructor.
Outcomes
- Describe the probabilistic approach to machine learning, including key issues in modeling, inference, and learning of probabilistic models.
- Demonstrate knowledge of modern deep generative machine learning algorithms including variational autoencoders, generative adversarial networks, autoregressive models, and normalizing flows.
- Implement and apply probabilistic and deep generative algorithms to problems and datasets involving images, text, audio, and other modalities.
- Develop an understanding of state-of-the-art results and open research problems in modern deep generative modeling.
Regular Academic Session.
-
Credits and Grading Basis
3 Credits Stdnt Opt(Letter or S/U grades)
-
Class Number & Section Details
-
Meeting Pattern
-
MW
Bill and Melinda Gates Hll G13
Ithaca, NY (Main Campus) - Jan 23 - May 9, 2023
Instructors
Kuleshov, V
-
MW
Bill and Melinda Gates Hll G13
-
Additional Information
Instruction Mode: Distance Learning-Synchronous
This class is offered via Distance Learning from Cornell Tech to Ithaca. Enrollment is restricted to CIS PhD and CS MS students only.
Regular Academic Session.
-
Credits and Grading Basis
3 Credits Stdnt Opt(Letter or S/U grades)
-
Class Number & Section Details
-
Meeting Pattern
-
MW
Bloomberg Center 91
Cornell Tech - Jan 23 - May 9, 2023
Instructors
Kuleshov, V
-
MW
Bloomberg Center 91
-
Additional Information
Instruction Mode: In Person
Taught in NYC. Enrollment Limited to Cornell Tech PhD Students only. Master's Cornell Tech students eligible with instructor permission.
Share
Or send this URL: