ECE 5412
Last Updated
- Schedule of Classes - January 9, 2020 9:13AM EST
- Course Catalog - January 9, 2020 9:14AM EST
Classes
ECE 5412
Course Description
Course information provided by the Courses of Study 2019-2020.
Covers essential topics in high dimensional statistical inference, stochastic optimization, Bayesian statistical signal processing and Markov Chain Monte-Carlo stochastic simulation. The course is four inter-related parts. Part 1 covers the basics of probabilistic models, Markov chain Monte-Carlo simulation and regression with sparsity constraints. Part 2 covers Bayesian filtering including the Kalman filter, Hidden Markov Model filter and sequential Markov chain Monte-Carlo methods such as the particle filter. Part 3 covers maximum likelihood estimation and numerical methods such as the Expectation Maximization algorithm. Part 4 covers stochastic gradient algorithms and stochastic optimization. The course focuses on the deep fundamental ideas that underpin signal processing, data science and machine learning - the assignments and project will explore applications.
When Offered Spring.
Outcomes
- Students will learn state of the art methods in Bayesian state estimation, parameter estimation and applications.
Regular Academic Session.
-
Credits and Grading Basis
3 Credits Stdnt Opt(Letter or S/U grades)
-
Class Number & Section Details
-
Meeting Pattern
- TR Bill and Melinda Gates Hll G01
Instructors
Krishnamurthy, V
Share
Disabled for this roster.